Uniserial dimension of modules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

On the Noetherian dimension of Artinian modules with homogeneous uniserial dimension

 ‎In this article‎, ‎we first‎ ‎show that non-Noetherian Artinian uniserial modules over‎ ‎commutative rings‎, ‎duo rings‎, ‎finite $R$-algebras and right‎ ‎Noetherian rings are $1$-atomic exactly like $Bbb Z_{p^{infty}}$‎. ‎Consequently‎, ‎we show that if $R$ is a right duo (or‎, ‎a right‎ ‎Noetherian) ring‎, ‎then the Noetherian dimension of an Artinian‎ ‎module with homogeneous uniserial dim...

متن کامل

Almost uniserial modules

An R-module M is called Almost uniserial module, if any two non-isomorphic submodules of M are linearly ordered by inclusion. In this paper, we investigate some properties of Almost uniserial modules. We show that every finitely generated Almost uniserial module over a Noetherian ring, is torsion or torsionfree. Also the construction of a torsion Almost uniserial modules whose first nonzero Fit...

متن کامل

Explicitly Non-Standard Uniserial Modules

A new construction is given of non-standard uniserial modules over certain valuation domains; the construction resembles that of a special Aronszajn tree in set theory. A consequence is the proof of a sufficient condition for the existence of non-standard uniserial modules; this is a theorem of ZFC which complements an earlier independence result.

متن کامل

ω1-generated uniserial modules over chain rings

The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three twosided ideals, and chain rings with “many” two-sided ideals. We prove that there exists an ω1-generated uniserial module over every non-artini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2013.09.054